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We apply an elementary measurement scheme to calculate the electronic triplet-singlet transition mediated
by hyperfine interaction in a double-quantum dot. We show how the local character of the hyperfine interaction
and the nuclear back-action process �flip-flop� are crucial to cancel destructive interferences of the triplet-
singlet transition probability. It is precisely this cancellation that differentiates the hyperfine interaction from an
anisotropic magnetic field which mixes the triplet and the singlet eigenstates.
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Experimental progress during the last two decades has
opened the possibility to reduce semiconductor devices to
the nanometer scale, such as quantum wires and quantum
dots. Furthermore, coherent control of electronic transport
and spin manipulation in quantum dots1 are also possible due
to the long spin relaxation time.2 These two facts lead us to
think of quantum dots as the minimal structures of computers
based on quantum-mechanical principles, i.e., quantum com-
puters. Quantum properties such as entanglement or quantum
parallelism will be used as algorithm tools.3 However, there
are still a lot of obstacles that separate us from the construc-
tion of such a computer. A major source comes from deco-
herence through the interaction with the environment. Spe-
cial attention has been paid to the interaction between the
nuclear and the electronic spins by means of the hyperfine
�HF� interaction.4–6 The importance of this well-known de-
coherence process is clearly manifested in a very known sys-
tem: a double-quantum dot �DQD� in the spin blockade �SB�
regime.7–13 There, the occupation depends on the spin degree
of freedom and sequential transport is blocked due to the
Pauli exclusion principle. In this way, whenever the transport
is blocked, a current may arise only when spin scattering
processes such as HF interaction flips one of the electronic
spins,7,8 inducing the triplet-singlet transition �T�1-S�.

Many experiments have been performed in a lateral DQD
in the SB regime. Some of them show a hysteretic behavior
upon sweeping the magnetic field.10,11 Besides this hysteretic
behavior, other experiments in the strong interdot coupling
regime show how current changes radically and prominent
current spikes appear tuning the in-plane magnetic field.11

Motivated by these recent experiments, we have studied mi-
croscopically the T�1-S transition probability induced by the
HF interaction in a lateral DQD. The T�1-S transition deter-
mines transport and serves as a basis to study the nuclear
dynamical polarization, providing the possibility to study
quantitatively the current in any interdot coupling regime.

Double-slit analogy. Before starting to calculate the tran-
sition rate, let us discuss some physical aspects that make the
HF interaction different from other interactions such as the
spin-orbit interaction or an anisotropic magnetic field. The
HF interaction has two special characteristics: the first one is
its local character. Thus, the electronic envelope function de-
termines the number of nuclei that can interact with the elec-
tronic spin. Therefore, it is natural to associate an ensemble

of nuclear spins with each quantum dot �NL and NR in Figs.
1�b� and 1�c��. The second one is related to the spin conser-
vation. Whenever there is an electronic-spin-flip transition
�T�1-S�, the spin orientation of one nuclear spin localized in
one of the two baths, NL or NR, is reversed. It is precisely this
local change that allows one to detect in which of the dots
the electronic-spin flips. In analogy to the double-slit experi-
ment, we will show that the negative T�1-S interference pat-
tern is completely destroyed when the nuclear-spin en-
sembles measure exactly in which of the dots is the spin flip
produced �Fig. 1�b��. To complete our analysis, we have con-
sidered the case where some of the nuclear spins interact
with both dots �Fig. 1�c��, which occurs when the electronic
wave function is extended, i.e., strong interdot coupling. As
we will see, the shared bath gives rise to an uncertainty in the
local measurement of the spin flip, leading to the appearance
of negative interference terms proportional to the overlap of
the electronic wave functions.

Considering the nuclear-spin bath as a slit detector is sup-
ported by the fact that nuclear spins have no internal
dynamics.14 Estimations of nuclear-spin dynamics, due to
dipole-dipole nuclear-spin interaction, suggest that time
scales governing nuclear-spin evolution �t�100 ms� are or-
ders of magnitude slower than other associated with
electron-spin processes.5 Thus, we consider only changes in

FIG. 1. �a� Spin blockade regime shown in the scheme of the
double-slit experiment. Schematic drawn of the atomic envelope
functions of a DQD in the �b� weak- and �c� strong-coupling
regimes.
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the nuclear-spin states induced by the HF interaction with the
electrons. If the internal nuclear-spin dynamics were not fro-
zen, one would take them into account.6

Transition rate. In our model, the eigenstates of two elec-
trons trapped in a lateral DQD are obtained by using the
Heitler-London approximation. This approximation has been
widely used in the DQD context.15 The electronic wave func-
tions are described by the direct product of spin and orbital
wave functions. The spin state is given by the known singlet-
triplet basis, while the orbital part is composed by the dis-
placed Fock-Darwin states �r �L� and �r �R�, which are the
exact atomic states

���� =
�L�1�R�2�� � �L�2�R�1��

�2�1 � O2�
, �1�

with O=	d2r�L �r��r �R� corresponding to the overlap of the
right and left orbitals. The sign + �−� corresponds to the
singlet �triplet� state, while the numbers 1 and 2 label the
electrons. In the spin blockade regime, electrons are found in
the triplet states �T�1�, where the two electrons have a par-
allel spin polarization.

The hyperfine interaction can be seen as the scattering
between electronic- and the nuclear-spin wave functions. The
above-mentioned characteristics are expressed by the contact
Hamiltonian16

VHF =
A

NL


k=1

NL



i=1,2

�Si
+IL,k

− + Si
−IL,k

+ + Si
zIL,k

z �

+
B

NR


k=1

NR



i=1,2

�Si
+IR,k

− + Si
−IR,k

+ + Si
zIR,k

z � , �2�

where Si
� are the raising/lowering spin operators of the elec-

tron i. IL�R�,k
� are the raising/lowering of the kth nuclear-spin

operator. The subscripts L and R denote which of the dots
placed the nuclear spins. NL�R� is the number of nuclear spins
that interact with an electron when it is localized in the left
�right� dot. A and B are the hyperfine interaction constants
for the left and the right dots, respectively.

Terms containing the raising and the lowering operators
describe the dynamic part of the hyperfine interaction; they
are responsible for the electronic–nuclear-spin flip. On the
other hand, the z-projection terms give rise to an additional
Zeeman splitting, called Overhauser shift.

Having defined the DQD eigenbasis and the HF Hamil-
tonian, we are ready to study the decoherence produced by
the spin environment in the T�1-S transition. In order to de-
scribe completely the T�1-S transition, we must include the
nuclear states in the initial and final wave functions.14 Thus,
we obtain the transition probability rate

PT→S = 

k=1

N

��mf ,k��S�VHF�T�1��mi��2 = 

k=1

N

�S��mf ,k���mf ,k��S� ,

�3�

where �=VHF�T�1��mi��mi��T�1�VHF. We have defined N as
the total number of nuclear spins that interact with the dots.
The initial nuclear-spin state

�mi� = �
k=1

N

��k� �4�

is an eigenstate of Iz. Here, �k is the z component of the kth
nuclear spin. The states �mf ,k� for k from 1 to N represent all
possible final nuclear-spin states. Depending on the elec-
tronic initial state �T�1�, it is defined as �mf ,k�= Ik

��mi�, where
Ik

� are the raising/lowering kth nuclear-spin operators. �mf ,k�
is zero in the case where the initial kth nuclear spin is paral-
lel oriented with respect to the electronic spins �T�1�. In or-
der to make the discussion clearer, we restrict the calculation
to the initial electronic state �T+1�. Notice that in this case the
contribution to the T+1-S transition comes from the down
oriented nuclear spins.

The HF interaction entangles the electronic and the
nuclear wave functions. Operating the initial state
���= �T+1��mi� by means of the HF Hamiltonian �2�, we ob-
tain

VHF��� =
1

�2�1 + O2�
��↑1,↓2� B

NR
�L�1�R�2���MR�

−
A

NL
�L�2�R�1���ML�� + �↓1,↑2�

	 A

NL
�L�1�R�2���ML� −

B

NR
�L�2�R�1���MR��� ,

�5�

where

�ML�R�� � 

k=1

NL�R�

IL�R�,k
+ �mi� �6�

is a linear combination of nuclear states, where one of the
nuclear states of the L�R� dot has been flipped from ↓ to ↑,
i.e., NR�L�,↓. Each component of the sum �6� belongs to the
final-state basis ��mf ,k��. �ML�R�� contains as many terms as
nuclear spins ↓ interact with an electron localized in the dot
L�R�.

Using Eq. �5� we can calculate directly the product
�=VHF������VHF. Finally, we have to carry out the projec-
tion on the final nuclear �nuclear trace out� and electronic
�singlet� states. Before presenting the general results, it is
convenient to evaluate first scalar products involved in the
nuclear trace,



k=1

N

�mf ,k�Mi��Mj�mf ,k� = �Mi�Mj� , �7�

for i and j equal to L and R. First of all, we evaluate the case
i= j. Due to orthogonality, the projection of each component
of state �6� contributes to the total scalar product with unity,
if two equal components are projected, and zero otherwise.
With this in mind it is easy to calculate

�ML�R��ML�R�� = NL�R�,↓. �8�

On the other hand, the meaning of the scalar product with
i� j is more subtle. If we had imagined �ML� and �MR� as
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two independent spaces, we would say that no term survives
due to orthogonality conditions. In principle, this argument
looks to be reasonable, but care must be taken due to the
existence of an overlap between the atomic wave functions
O2. The existence of such an overlap implies that both elec-
trons can interact with a common ensemble of nuclear spins
at the same time �see Fig. 1�c��. Mathematically this is re-
flected by the fact that �ML� and �MR� contain a common
nuclei ensemble

�ML�MR� = NC,↓, �9�

where NC,↓ is the number of nuclei that can be flipped by
both electrons placed in different dots. Obviously this num-
ber is proportional to the overlap. It must be noted that Ni,↓
refers to those nuclei that can interact only with the electron
localized at dot i and to others that can interact with both of
them. Thinking in terms of detectors, we would say that the
existence of the shared bath gives rise to an uncertainty in
the localization of the electronic-spin flip. Thus, the higher
the NC,↓, the less reliable the spin-flip detectors and the more
pronounced the negative interference pattern.

Finally, we replace the obtained expressions �5�, �8�, and
�9� into Eq. �3�, yielding

PT→S = DB2NR,↓

NR
2 + A2NL,↓

NL
2 − 2AB

NC,↓
NLNR

� , �10�

where we have used D= �1+O2� / �1−O2�. Equation �10� is
the main result of our work. It is composed of three terms:
the first two arise due to the contribution of the nuclear spins
of each dot, which are able to flip the electronic spin, while
the third one arises due to the uncertainty in the measure-
ment of the spin-flip position �NC,↓�, caused by the overlap of
the electronic wave functions. We observe a change in the
tunnel interdot on the interference pattern. In the weak-
coupling regime, the interference tends to zero since the
overlap is negligible �O2→0�. In this case, nuclear detectors
are perfectly reliable and thus the interference term of Eq.
�10� is cancelled.8 On the other hand, in the strong-coupling
regime the overlap is not negligible and an uncertainty in the
spin-flip position arises and leads to the appearance of a
negative interference pattern. It must be noted the fundamen-
tal difference between the HF interaction and the effect of an
inhomogeneous magnetic field; in the case of the inhomoge-
neous magnetic field the interference pattern holds, leading
to a probability that depends on the difference between the
in-plane effective magnetic fields of each dot.12

Let us extend our analysis to the transition rates between
the triplet states T�1 and T0. It yields a similar expression as
Eq. �10�, except for D which is replaced by one and the
negative sign of the interference pattern which becomes posi-
tive. On the other hand, the states T0 and S are mixed due to
the difference between the Zeeman splittings within each
dot, i.e., due to the magnetic field anisotropy.18

Current. In order to show how the obtained transition rate
�10� determines a measurable quantity as the current, we
analyze transport in the strong interdot coupling regime by
means of a simple model. We focus on the following trans-
port configuration: zero detuning, low in-plane magnetic

field, and strong interdot coupling; we consider the sche-
matic of the different spin-flip transitions depicted in Fig.
2.11 At this experimental conditions, the energy difference
between the T�1,1� and S�1,1� �T0 and T�1� states is larger
than the nuclear Zeeman splitting. Therefore, at low tempera-
tures only transitions T�1-S and T�1-T0 involving phonon
emission are efficient.19

We calculate the stationary current through the DQD
based on a model presented in Ref. 12, within a density-
matrix formalism, considering the electron reservoirs within
Markovian approximation. The system involves seven diag-
onal matrix elements: three triplet states T�1,1�, two singlet
states S++= 1

�2
�S�1,1�+S�0,2�� and S−−= 1

�2
�S�1,1�−S�0,2��,

and two single occupied states.17 Additionally, it involves six
nondiagonal matrix elements, corresponding to the coher-
ences between the singlet S++ ,S−− and the triplet T0�1,1�
states, which are mixed by the anisotropy of the Overhauser
field �
Bz�. We calculate the stationary current making the
time derivatives equal to zero. Aiming at simplicity, the trip-
let states T�1,1� and the extended singlet state S++ are
coupled to the left lead, while S++ and S−− are coupled to the
right by means of the coupling constant �. The current is
proportional to the occupation of the state S�0,2� and can be
calculated analytically for the general case. The general so-
lution is quite lengthy but it can be simplified assuming that

Bz�ES−ET and that the transition rate � is orders of mag-
nitude higher than the spin-flip rates, yielding

I =
2��� + ��

�3� + ��3� + 2�� + ��
, �11�

where � and  represent the inelastic transition rates T�1-S,
while � represents the rates T�1-T0. Obviously this simple
model does not attempt to explain quantitative experimental
evidences,11 but it is illustrative in order to show how the
current is governed mainly by the transition rates T�1-S and
T�1-T0 �10�. To obtain a more detailed model one has to
study the time evolution accounting for the dynamical polar-
ization of the nuclear-spin ensembles, which is responsible
for current bistability among other nonlinear effects.8

We have presented a microscopic model to describe the
triplet-singlet and triplet-triplet transition probabilities

FIG. 2. Transport window scheme of a DQD in the sharp trans-
port regime. The dashed arrows represent spin-flip phonon assisted
transitions, while the double arrows represent coherent couplings
due to the inhomogeneous Overhauser field.
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mediated by the HF interaction in a DQD. We have stressed
the importance of the local character and the nuclear flip-flop
process of the HF interaction. These characteristics lead to a
partial cancellation of the interference pattern, which can be
intuitively seen by means of an analogy between the triplet-
singlet transition and the double-slit experiment. With this
picture in mind, we have shown the fundamental difference
between the transition mediated by the hyperfine interaction
and an anisotropic magnetic field. The transition under study
turned out to be relevant in the spin blockade regime. The

obtained results will serve as a basis to study transport ac-
counting for the nuclear-spin dynamical polarization and will
open the possibility to explain experiments covering differ-
ent tunneling coupling regimes.
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